I 1C

HAGENBERG

Research Institute for Sy

SOftwa rep ark },,

mbolic Computation

i - LN N
iy) 'AY

Informatics

Interactive Tools
for Inspecting Proofs

IN Theorema

This thesis is the result of the author's work with the Theorema theorem
proving system. We want to aid mathematics and computer science

students in studying logic.

The tool we presented here is designed to check the user's
understanding of the inference rules during a (logical) proof. On the
other hand, it can be also used to check the correctness of an

automatically generated proof.

The application of our work is illustrated by examples of increasing

difficulty.

Introduction

Nowadays, logic is conquering a more and more important
position.This universal language provides an opportunity to
share knowledge without being able to speak a common
natural language.Those who speak’ logic' can formulate the
whole world of mathematics, although learning logic is not
SO easy.

The Theorema system already provides tools for the
inspection of proofs generated by (the Theorema) provers.

In this work, we illustrate tools for training predicate logic
proving with mathematics and computer scientist students.
In addition, we implement and describe a slight extension of
one of the Theorema proof inspection tools. This extension
allows the student to choose at each proof step, from a
library of inference rules, the appropriate inference rule,
which then is compared with what the automated prover
was doing. Several case studies are presented in detail.
Also, for beginning students who did not have any exposure
to proving and the Theorema system, an easy-to-read
manual is presented.

The Theorema project, initiated and directed by Bruno
Buchberger, aims at supporting the entire mathematical
exploration cycle including the proving phase. Built on top
of Mathematica, it implements a two-dimensional syntax of
mathematical formulae similar to the syntax used by
mathematicians, and a formal text language for defining
new notions, properties of notions, problems, and
algorithms, and for combining mathematical formulae in
knowledge bases and for using it in proofs. The system
contains various general provers (which can be used for
generating proofs in arbitrary mathematical theories) and
special provers (which can be used for generating proofs in
specific theories).

In the default setting, a Theorema reasoner tries to solve a
given reasoning problem automatically by repeated
inference rule application, until either a successful proof is
obtained or no more inference rules can be applied. An
inference rule takes as input a reasoning situation
consisting of a reasoning goal and a knowledge base and
returns a new reasoning situation.

The Rulelnspector is an extension of the Focus Windows
technique. We designed it to help check the user's
understanding of the inference rules of the prover being
studied. It can be also used to check the correctness of an
automatically generated proof. By calling a proof, another
window appears besides the classical Focus Window, the
Inference Rule Library. This is a collection of the possible
inference rules of the prover used for proving. The user can
click on the name of the inference rule in order to check if it
was used in the current proof step or not. The
RuleInspector uses the two-phase style of the Focus
Window but it has additional features depending on its style
(strict or free).

In a mathematical proof it is usually not written which proof
rule was applied in a certain proof step. Although the ones
who created the proof know exactly which one of the rules
are necessary, for a new person on the field it takes time to
acquire the methods, to get used to use them and to learn
the small tricks. We tried to reduce this time to gain a
quicker taste of the proving methodology. The RuleInspector
was created to investigate the proofs, although it is also
capable to help debugging the functioning of the provers.

The inspection has as many steps as the proof has. One can
follow the proof steps in the Focus Window and one should
choose from the list of inference rules the one used in the
current step. The Focus Window presentation shows two
phases for each proof step. The 'Attention Window' shows
the user the formulae that have been utilized by the applied
rule. The 'Transformation Window' adds to this any
formulae that have been inferred by the inference rule
applied.

Independent of the two focus windows phases, the rule
inspector can be used in two modes: free - the default one -
and strict. By default, a user can freely navigate through the
proof, without necessarily choosing an inference rule in the
Inference Rule Window. In the strict mode reaching a
situation in a Transformation Window the user cannot
continue navigating through the proof until the inference
rule actually used is picked from the inference rule window.
In the strict inspection mode the navigation buttons are
deactivated.

Start[pushed rule]

|

FWnotopen? >— sendMsg ——»{ Return[-1]

l yes

Att. Window? >—» send Msg R — Strict? —»! Return[0]

l no l yes
setAllowNext
Phase[True]

no
Return[0] <— Strict? <+—— send Msg <«———InttialProofSit?

R

setAllowNext getapplied rule
Phase[True] l

no
pushed=applied>—— send Msg E— Strict? —_— Return[2]
?

rule?
l yes l
yes
send Msg setAllowiext

l Phasg[False]

— " strict?

l yes
setAllowNext
Phase[Trug]

l

— Return[1]

